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Abstract

Undirected graphs and acyclic digraphs (ADGs), as well as their mutual extension to chain
graphs, are widely used to describe dependencies among variables in multivariate distributions.
In particular, the likelihood functions of ADG models admit convenient recursive factorizations
that often allow explicit maximum likelihood estimates and that are well suited to building
Bayesian networks for expert systems.  Whereas the undirected graph associated with a
dependence model is uniquely determined, there may, however, be many ADGs that determine
the same dependence (= Markov) model.  Thus, the family of all ADGs with a given set of
vertices is naturally partitioned into Markov-equivalence classes, each class being associated with
a unique statistical model.  Statistical procedures, such as model selection or model averaging,
that fail to take into account these equivalence classes, may incur substantial computational or
other inefficiencies.  Here it is shown that each Markov-equivalence class is uniquely determined
by a single chain graph, the essential graph, that is itself simultaneously Markov equivalent to all
ADGs in the equivalence class.  Essential graphs are characterized, a polynomial-time algorithm
for their construction is given, and their applications to model selection and other statistical
questions are described.

1.  Introduction.

The use of directed graphs to represent possible dependencies among statistical
variables dates back to Wright (1921) and has generated considerable research activity
in the social and natural sciences.  Since 1980, particular attention has been directed to
graphical Markov models specified by conditional independence relations among the
variables, i.e., by the Markov properties determined by the graph.  Both directed and
undirected graphs have found extensive applications, the latter in such areas as spatial
statistics and image analysis.  The recent books by Whittaker (1990) and Lauritzen
(1996) conveniently summarize the statistical perspective on these developments.
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Graphical Markov models determined by acyclic directed graphs (ADGs) admit
especially simple statistical analyses.  In particular, ADG models admit convenient
recursive factorizations of their joint probability density functions (Lauritzen et al

(1990)), provide an elegant framework for Bayesian analysis (Spiegelhalter and
Lauritzen (1990)), and, in expert system applications, allow simple causal
interpretations (Lauritzen and Spiegelhalter (1988)).  In the multinomial and
multivariate normal cases, the likelihood function (i.e., both the joint probability density
function and the parameter space) factorizes and admits explicit maximum likelihood
estimates, which exist with probability one (Lauritzen (1996), Andersson and Perlman
(1996).  Furthermore, the only undirected graphical (UDG) models with these properties
are the decomposable models, i.e., the UDG models that have the same Markov properties
as ADG models (Dawid and Lauritzen (1993), Andersson et al (1996a)).

For these reasons, ADG models have become popular across an extraordinary range
of applications; see, for example, Lauritzen and Spiegelhalter (1988), Pearl (1988),
Neapolitan (1990), Spiegelhalter and Lauritzen (1990),  Spiegelhalter et al (1993),
Madigan and Raftery (1994), and York et al (1995).  Indeed, the vibrant “Uncertainty in
Artificial Intelligence” community focuses much of its effort on ADG models.

Much of this applied work has adopted a Bayesian perspective: “experts” specify a
prior distribution on competing ADG models.  These prior distributions are combined
with likelihoods (typically integrated over parameters) to give posterior model
probabilities.  Model selection algorithms then seek out the ADG models with highest
posterior probability, and subsequent inference proceeds conditionally on these selected
models (Cooper and Herskovits (1990), Buntine (1994), Spiegelhalter et al (1993),
Heckerman et al (1994), Madigan and Raftery (1994)).  Non-Bayesian model selection
methods proceed in a similar manner, replacing posterior model probabilities by, for
example, penalized maximum likelihoods (Chickering (1995)).

Heckerman et al (1994) highlighted a fundamental problem with this general
approach.  Because several different ADGs may determine the same statistical model,
i.e., may determine the same set of conditional independence restrictions among a given
set of random variates, the collection of all possible ADGs for these variates naturally
coalesces into one or more classes of Markov-equivalent ADGs, where all ADGs within a
Markov-equivalence class determine the same statistical model.  Model selection
algorithms that ignore these equivalence classes face three main difficulties:

1. Repeating analyses for equivalent ADGs leads to significant computational
inefficiencies.
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2. Ensuring that equivalent ADGs have equal posterior probabilities imposes severe
constraints on prior distributions.

3. Weighting individual ADGs in Bayesian model averaging procedures to achieve
specified weights for all Markov-equivalence classes is impractical without an 
explicit representation of these classes.

Treating each Markov-equivalence class as a single model would overcome these
difficulties.  As Heckerman et al (1994) have pointed out, however, a tractable
characterization of these equivalence classes has not been available.  In the present
paper we show that for every ADG D , the equivalence class [D] can be uniquely
represented by a certain Markov-equivalent chain graph D* (Note 1), the essential graph

associated with the equivalence class (Note 2).  Furthermore, we present an explicit
characterization of those graphs G such that G = D* for some ADG D, then we apply
this characterization to obtain a polynomial-time algorithm for constructing D* from D.
This characterization and construction lead to more efficient model selection and model
averaging procedures for ADG models, based on essential graphs.  Such procedures are
discussed briefly in Section 7 and at greater length in Madigan et al (1996).

We suggest, therefore, that graphical modelers, both Bayesian and non-Bayesian,
may wish to focus their attention on the class of essential graphs rather than ADGs.

Some basic definitions, terminology, and results concerning graphs, graphical
Markov models, and their Markov equivalence are summarized in Appendices A and B,
which the reader might review first.  In Section 2 the essential graph D* associated with
an ADG D is formally defined and illustrated.  Section 3 introduces the notions of
irreversible, protected, andstrongly protected arrows and relates these to the essential arrows

of D, i.e. the arrows of D*.
In Section 4 we show first that D* is a chain graph, each of whose chain components

induces a chordal UDG (Proposition 4.1).  Every D' ∈ [D] can be recovered from D* by
orienting the edges of each (chordal) chain component of D* in all possible “perfect”
ways (Proposition 4.2).  The chain graph D*  is itself Markov equivalent to D

(Proposition 4.3).
Theorem 4.1, the main result of Section 4, applies Proposition 4.1 to obtain an

explicit characterization of those graphs G that can occur as the essential graph D* for
some ADG D.  Corollaries 4.1 and 4.2 characterize those UDGs and digraphs that can
occur as essential graphs D* for some ADG D.  These results in turn lead to Proposition
4.5, which can be applied to establish the irreducibility of certain Markov chains used
for Monte Carlo search procedures over the space of essential graphs (see Section 7).
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A polynomial-time algorithm for constructing D* from D is presented in Section 5
(Note 3).  Its validity is established in Theorem 5.1 by means of our characterization of
essential graphs.  In Section 6 we exhibit all essential graphs on four or fewer vertices
and note that the number of essential graphs is substantially smaller than the number of
ADGs.

In Section 7 we indicate how the Markov-equivalence classes and their associated
essential graphs can be used to overcome the three difficulties listed above that
complicate model selection and model averaging for ADG models.  We also briefly
discuss model-search procedures based on equivalence classes and essential graphs.

Markov dependence models determined by chain graphs recently were introduced
and developed by Frydenberg and Lauritzen (1989), Lauritzen and Wermuth (1989),
and Frydenberg (1990); also see Andersson et al (1996a).  The introduction of chain
graphs followed earlier work in this direction by Goodman (1973), Asmussen and
Edwards (1983) and Kiiveri et al (1984).  Chain graphs provide much of the focus for
current research on modeling statistical dependence; see, for example, Wermuth and
Lauritzen (1990) and Cox and Wermuth (1993, 1996).  The fact that the essential graph
D* associated with an ADG D is a chain graph that is Markov equivalent to D allows us
to conduct statistical inference in the space of essential graphs, rather than in the larger
space of individual ADGs - see Section 7, especially (7.2).

2.  Markov Equivalence of Acyclic Digraphs; the Essential Graph D*.

Our development begins with a well-known graph-theoretic criterion for the Markov
equivalence of ADGs, given in Theorem 2.1.  This was discovered by Verma and Pearl
(1990, Theorem 1; 1992, Corollary 3.2) and, independently, by Frydenberg (1990,
Theorem 5.6) for the more general class of chain graphs -  also see Andersson et al

(1996a, Theorem 3.1).  Frydenberg’s result is stated as Theorem B.1 of our Appendix B.
For completeness, in Appendix B we also present a direct proof of Theorem 2.1,
different from that of Verma and Pearl.

Theorem 2.1.  Two ADGs are Markov equivalent if and only if they have the same
skeleton and the same immoralities (see Figure 2.1).
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             Figure 2.1:  The four ADGs with the same skeleton as D1 and the immorality
             (b, d, c).  The ADGs D1, D2, and D3 have no other immoralities, hence are Mar-
             kov equivalent by Theorem 2.1.  The ADG D4 has the additional immorality
             (b, a, c), hence is not Markov equivalent to the others.  Thus, [D1] = {D1, D2, D3}.

We say that two ADGs D1 and D2 are graphically equivalent, and write D1 ~ D2, if they
have the same skeleton and the same immoralities.  By Theorem 2.1, D1 and D2 are
Markov equivalent if and only if they are graphically equivalent; thus we shall use the
term equivalent for both notions.  The equivalence class containing D is denoted by [D].
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             Figure 2.2:  The 23 = 8 possible digraphs with the same skeleton as D1 and the
             immorality (b, d, c).  Of these 8, D5, D6, and D7 are not acyclic, while D4 and D8

             are acyclic but possess the additional immorality (b, a, c), so [D1] = {D1, D2, D3}.

While Theorem 2.1 provides a practical criterion for deciding whether two given
ADGs are Markov equivalent, it does not directly yield a characterization of the entire
equivalence class [D] for a given ADG D.  Consider, for example, the following question
regarding the non-transitive ADG D1 in Figure 2.2:  does [D1] contain a transitive ADG?
(For the statistical relevance of this question, see Andersson et al (1995).)  Theorem 2.1
does not allow us to answer this question by direct inspection of D1; instead, we must
first determine all members of [D1], then check each member for transitivity, as follows.
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Since (b, d, c) is an immorality in D1, the arrows b→d and c→d are essential in D1, i.e.,
these arrows must occur in each member of [D1].  The other three edges of D1 can be
oriented in 23  = 8 possible ways, as shown in Figure 2.2; of these 8 digraphs, only 5 are
acyclic, and of these 5, only three (D1, D2, D3) possess the same immorality as D1 and no
other.  Thus, [D1] = {D1, D2, D3}, hence [D1] does contain a transitive ADG, namely D3.

Since the number of possible orientations of all arrows that do not participate in any
immorality of an ADG D grows exponentially with the number of such arrows, hence
super-exponentially with the number of vertices, determination of the equivalence class
[D] by exhaustive enumeration of possibilities, as in the preceding example, rapidly
becomes computationally infeasible as the size of D increases.  A closer examination of
this example reveals, however, that the arrow a→d occurs in every member of [D1],
hence is an essential arrow of D1 even though it is not involved in any immorality of D1.
Had we been able to identify all 3 essential arrows of D1 directly from D1 itself, it would
not have been necessary to consider D5 - D8 in order to determine [D1].  On the other
hand, it appears necessary to determine [D1] before we can identify the essential arrows
of D1.

Fortunately, this is not the case.  A main purpose of the present paper is to develop a
polynomial-time algorithm (Section 5) for determining all essential arrows of an ADG
D.  This is done by introducing and characterizing the essential graph D* associated with
D.  Furthermore, questions such as the existence of a transitive member of [D] can be
answered by a polynomial-time inspection of D*  itself, without the need for an
exhaustive search of [D] (Andersson et al (1996b)).

Definition 2.1.  The essential graph D* associated with D is the graph

D* := ∪(D’|D' ~ D),

i.e., D* is the smallest graph larger than every D' ∈ [D].

Thus, D* is the graph with the same skeleton as D, but where an edge is directed in
D* iff it occurs as a directed edge (≡ arrow) with the same orientation in every D' ∈ [D]; all
other edges of D* are undirected.  (See Figure 2.3 for examples.)  The directed edges (≡
arrows) in D* are called the essential arrows of D.  Clearly, every arrow that participates
in an immorality in D is essential, but D may contain other essential arrows as well, e.g.,
the arrow a→d in the second graph in Figure 2.3 and the arrows a→d and b→d (verify!)
in the third graph in Figure 2.3 (Note 4).  We will show that D* is a chain graph
(Proposition 4.1) that is itself Markov equivalent (Note 5) to D (Proposition 4.3), so that
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D* contains the same statistical information as D.  (Note that D and D* have the same
skeleton and immoralities, so that D1 ~ D2 iff D1* = D2*.)  The complete characterization
of essential graphs in Theorem 4.1 involves further restrictions on the configurations of
arrows and lines (≡ undirected edges) that can occur in D*.
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a d

             Figure 2.3:  Three examples of essential graphs D*.  In the first example, D is the
             ADG D1 of Figure 2.1.  In the second example, D is the ADG D1 of Figure 2.2.  In
              the third example, D = D* (see Corollary 4.2).

3.  First Characterization of the Essential Arrows of D.

By Definition 2.1, an arrow a→b in and ADG D is essential iff a→b ∈ D' for each D' ∈
[D].  Proposition 3.1 below shows that, in addition, a→b must be protected in each D' ∈
[D], that is, must occur in each D' in at least one of the three configurations (a), (b), (c)
shown below Definition 3.2.

To begin, note that an essential arrow a→b must be irreversible in D:

Definition 3.1.  Let G be a chain graph.  An arrow a→b ∈ G  is irreversible in G if
changing a→b to a←b either creates or destroys an immorality or creates a directed
cycle.

To determine whether an arrow a→b is irreversible in G according to Definition 3.1,
global knowledge of G is required, since directed cycles of arbitrary length must be
considered.  For a characterization of irreversibility to be computationally feasible,
however, it must be local, that is, must only require consideration of directed cycles of
bounded length.  For an ADG D, Lemma 3.1(i) shows that in fact only directed cycles of
length 3 need be considered.  The following definition is required.

Definition 3.2.  Let G be a graph.  An arrow a→b ∈  G  is protected in G if paG(a) ≠
paG(b)\{a}.

It is easy to see that a→b is protected in G if and only if a→b occurs in at least one of
the following six configurations as an induced subgraph of G:
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If G is a chain graph, then only (a), (b), (c), or (d') can occur; if G ≡ D is an ADG, then
only (a), (b), or (c) can occur.  For a general graph G, a→b is protected in G iff a→b is
protected in the directed graph D(G) obtained by deleting all undirected edges (lines) in
G (since paG(a) = paD(G)(a)).

The arrow a→b is irreversible in a chain graph G if and only if either a→b occurs in
configuration (a) or (b) as an induced subgraph of G or else a→b blocks some directed
cycle in G.  If a→b is protected in a chain graph G, then clearly it is irreversible in G.  If G
≡ D is an ADG, then the converse is also true:

Lemma 3.1.  Let D be an ADG.
(i)  An arrow a→b is irreversible in D if and only if it is protected in D.
(ii) An arrow a→b is reversible in D if and only if the digraph D' obtained from D by
replacing a→b by a←b is acyclic and D' ~ D.
Proof.  (i) Suppose that a→b is irreversible in D by virtue of blocking some directed
cycle in D:

 

a b

c .

If no edge a⋅⋅⋅c is present in D  then a→b already occurs in configuration (b) as an
induced subgraph of D.  If an edge a⋅⋅⋅c is present in D then either

 

a b

c     or    

  

a b

c

occurs in D.  The first case is impossible since it contains a directed cycle.  Thus the
second must hold, so a→b occurs in configuration (c) in D.  Thus a→b is protected in D.  

(ii) This assertion is immediate.  

Lemma 3.1(i) is not true for a general chain graph G; the following chain graph
provides a counterexample:
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Proposition 3.1.  Let D be an ADG.  An essential arrow a→b of D is protected in every
D' ∈ [D].
Proof.  If a→b is an essential arrow of D then clearly a→b is irreversible in every D' ∈
[D], hence, by Lemma 3.1(i), a→b is protected in every D' ∈ [D].  

In Proposition 3.1, it is possible a priori that the third vertex c in the “protecting”
configuration (a), (b), or (c) for the essential arrow a→b ∈ D may vary with D', i.e., c =
c(D').  In fact this is not the case, but the notion of "protected" must be extended:

Definition 3.3.  Let G be a graph.  An arrow a→b ∈ G is strongly protected in G if a→b

occurs in at least one of the following four configurations as an induced subgraph of G:

(a):

  

a
c

b          (b):

 

a
c

b         (c):

  

a
c

b         (d):

 

c

c1

2

a b (c1 ≠ c2).

Since (d) ⇒ (d'), “strongly protected” ⇒ “protected”, while if G ≡ D is an ADG, then
“strongly protected” ⇔ “protected”.  For a chain graph G, the definition of "strongly
protected" differs from that of "protected" only in that (d) replaces (d'), but this
difference is significant:  by Theorem 4.1, every essential graph  D* must be a chain
graph and every arrow in D*  (i.e., every essential arrow of D) must be strongly

protected in D* (see the examples in Figure 2.3).  This characterization provides the
basis for the polynomial-time algorithm in Section 5 for constructing D* from D.  (Also
see Remark 5.1.)

In Corollary 4.2, it is shown that every arrow of an ADG D is essential (i.e., D = D*) if
and only if every arrow of D is protected in D.  The third graph in Figure 2.3 provides
an example.

The  final lemma will be needed for the proof of Theorem 2.1 in Appendix B.

Lemma 3.2.  Let D, D' be two ADGs such that D ~ D' but D ≠ D'.  Then there exists a
finite sequence D ≡ D1, ⋅⋅⋅, Dk ≡ D' such that each Di ∈ [D] and each consecutive pair Di,
Di+1 differ in exactly one edge.
Proof.  By the definition of equivalence, D and D' have the same vertex set V and the
same skeleton.  Let F := {a1→b1, ⋅⋅⋅, an→bn} ≠ ∅ denote the set of edges in D that occur
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with the opposite orientation in D'.  By Lemma 3.1(ii) and induction, it suffices to show
that at least one ai→bi is reversible in D.

Suppose, to the contrary, that each a→b ∈ F is irreversible in D, hence by Lemma
3.1(i), is protected in D.  Let b* be a minimal element of {b1, ⋅⋅⋅, bn} with respect to the
partial ordering (V, ≤) determined by the ADG D:  a ≤ b if and only if a = b or there exists
a path from a to b in D.  Let a* be a maximal element of {a ∈ V|a→b* ∈ F}.  Since a*→b*

∈ F, a*→b* cannot occur in an immorality in D.  Thus, because a*→b* is protected in D,
a*→b* ∈ F must occur in D either in configuration (a) as an induced subgraph of D with
c→a* ∈ F, or else in configuration (c) with either a*→c ∈ F or c→b* ∈ F.  But the first two
possibilities violate the minimality of b*, while the third violates the maximality of a*.
This completes the proof.  

4.  Characterization of the Essential Graph D*.

Theorem 4.1, the main result of this section, gives necessary and sufficient conditions
for a graph G ≡ (V, E) to be the essential graph D* for some ADG D.  We begin by
showing that such a G must be a chain graph.  (Most proofs are deferred to the end of
this section.)

Let D** denote the smallest chain graph larger than every D' ∈ [D].  That is, D** is the
graph obtained from D* by converting to undirected edges (≡ lines) all those directed
edges in D* that participate in a directed cycle in D*.  Note that this can be done in a
single step:  suppose that the arrow a→b occurs in a directed cycle in D* and that, after
converting a→b into a line, a second arrow c→d ∈ D* now becomes part of a directed
cycle:

  

a

b

c

d

(possibly a = c or b = d).  Then c→d was already part of a directed cycle in D* before a→b

was converted to a line.
Clearly D ⊆ D* ⊆ D**.  In fact, the second inclusion is an equality:

Proposition 4.1.  (i) D* = D**, hence D* is a chain graph.
(ii) For each chain component τ ∈ T(D*), the induced UDG (D*)τ is chordal.

Next, every ADG D’ ∈ [D] can be recovered from the essential graph D*:
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Proposition 4.2.  A digraph D' is acyclic and equivalent to the ADG D if and only if D'
is obtained from D* by orienting the edges of each (chordal) chain component (D*)τ of

D* in any perfect way.

Proposition 4.3.  Let D be an ADG and D* its essential graph.  Then D and D* are
Markov equivalent.

Theorem 4.1  (Characterization of D*).  A graph G ≡ (V, E) is equal to D* for some
ADG D if and only if G satisfies the following four conditions:

(i)   G is a chain graph;

(ii)  for every chain component τ of G, Gτ is chordal;

(iii) the configuration a→bc does not occur as an induced subgraph of G;

(iv) every arrow a→b ∈ G is strongly protected in G.

Since both UDGs and ADGs are chain graphs, Theorem 4.1 immediately yields the
following two corollaries.

Corollary 4.1.  Let G be a UDG. Then G  = D* for some ADG D  if and only if G is
chordal.

Corollary 4.2.  Let G be a digraph.  Then G = D* for some ADG D if and only if G is an
ADG and every arrow of G is protected in G; in this case G = D = D*.
Proof.  Apply Theorem 4.1 and the fact that an arrow is protected in an ADG if and
only if it is strongly protected in the ADG.  (Note that the chain components of an ADG
are just its vertices, hence trivially are chordal.)

The following is an example of an ADG D such that D = D*:
 

a
c

b
d .

Clearly, each arrow of D is protected in D.

Let G ≡ (V, E) be a chain graph.  An arrow a→b is an initial arrow of G if a is minimal
in {a' ∈ V|∃ b ∈ V ∋ a'→b ∈ E.} with respect to the pre-ordering (V, ≤) determined by G.
Note that G has no initial arrows iff G is a UDG.  Clearly an initial arrow a→b cannot
occur in configuration (a) in G, so, if G = D* for some ADG D, then Theorem 4.1 implies
that a→b must occur in configuration (b), (c), or (d) as an induced subgraph of G.
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Because D* is determined by the immoralities of D, one might speculate that in this
case, every initial arrow of G must in fact occur in configuration (b) or (d) as an induced
subgraph of G, but this is not true in general:  consider the initial arrow a→b of the chain
graph (in fact, ADG) G ≡ D ≡ D* in the figure in the preceding paragraph.  It is almost
true, however, as seen by the following result, which provides a useful necessary
condition for determining whether a given graph G is an essential graph.

Proposition 4.4.   Suppose that G = D* for some ADG D.  For every initial arrow a→b of
G, there exists a vertex c ∈ V such that a→c is also an initial arrow of G and a→c occurs
in configuration (b) or (d) as an induced subgraph of  G.

Corollary 4.3.  An ADG D has no essential arrows (i.e., D* is a UDG) if and only if D
has no immoralities.
Proof.  If D is moral then so is D*, hence configurations (b) and (d) cannot occur in D*.
Proposition 4.4 implies that D* has no initial arrows, hence D* is a UDG.  The converse
is trivial.

Remark 4.1.   An initial arrow in D* need not be initial in D, nor vice versa.  Consider
the ADG

D :=

 

a
c

bd .

Then a→b is initial in

D* ≡

 

a
c

bd

but not in D, whereas d→a is initial in D but does not occur in D*.

The final result of this section can be applied to establish the irreducibility of certain
Markov chains used for Monte Carlo search algorithms over the space of essential
graphs - see Section 7.

Proposition 4.5.  Let G and H be two essential graphs with the same vertex set V.  Then
there exists a finite sequence G ≡ G1, ⋅⋅⋅, Gk ≡ H of essential graphs with vertex set V such
that each consecutive pair Gi, Gi+1 differ by either:

(i)   exactly one line ab, or

(ii)  exactly one arrow a→b, or

(iii) exactly two arrows that form an immorality:  a→b←c.
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We turn to the proofs.  The proof of Proposition 4.1 requires the following five Facts:

Fact 1.  The configuration a→bc cannot occur as an induced subgraph of D*.
Proof.  If a→bc occurs as an induced subgraph in D* (requiring that a and c are not
linked), then a→b←c must occur as an immorality in some D' ~ D, hence b←c must be
an essential arrow, contradicting bc ∈ D*.  

Fact 2.  If

  

a
c

b occurs in D*, then there exist D1, D2 ∈ [D] such that

  

a
c

b occurs in

D1 and

  

a
c

b occurs in D2.

Proof.  Any D' ∈ [D] must contain either

(1):

 

a
c

b   or      (2):

 

a
c

b   or     (3):

 

a
c

b .

If (1) were to occur in n o D '  ∈  [D], then necessarily c→b ∈  D*, contradicting the
hypothesis.  Thus (1) must occur in some D1 ∈ [D].  Similarly, (2) must occur in some D2

∈ [D].  

Fact 3.  D** has the same immoralities as D (hence, as D*).
Proof.  Recall that D** is obtained by converting all arrows that occur in directed cycles
in D* into lines.  It is evident that D* has the same immoralities as D.  Since D* ⊆ D**,
D** can have the same or fewer immoralities than D*.  We shall show it impossible that
an immorality a→b←c occurs in D* while ab ∈ D**.

If this were to happen, then a→b would be part of a directed cycle (a, b≡b0, b1, ⋅⋅⋅,
bk≡a) in D* (see figure), where k ≥ 2 and where each edge bi-1⋅⋅⋅bi in the cycle occurs as
either bi-1bi or bi-1→bi, 1 ≤ i ≤ k.  (In particular, b1 ≠ a, c.)

 

a b0≡b c≡bk

b1

Case 1.  Suppose that bb1 ∈  D*.  Then there exist ADGs D1, D2 ∈ [D] such that
b1→b ∈ D1 and b1←b ∈ D2.  Since a→b←b1 cannot occur as an immorality in D1, there
must be edges a⋅⋅⋅⋅b1 and c⋅⋅⋅b1 in D1.  To avoid a cycle, necessarily a→b1 ∈ D2 and c→b1 ∈
D2, so a→b1←c forms an immorality in D2, hence also in D*.  Thus we have a shorter
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directed cycle (a, b1, ⋅⋅⋅, bk≡a) in D* such that the immorality a→b1←c occurs in D* but
ab1 ∈ D**.

Case 2.  Suppose that b→b1 ∈ D*.  Since D contains no directed cycles, at least one
edge in the cycle (a, b≡b0, b1, ⋅⋅⋅, bk≡a) must be undirected in D*.  Consider the smallest i
such that bi-1bi ∈ D*.  This i satisfies 2 ≤ i ≤ k and bi-2→bi-1bi occurs in D*.  By Fact 1,
there must be an edge bi-2⋅⋅⋅bi in D*. But bi-2←bi ∉ D*, since there is some ADG D' ∈ [D]
containing bi-1→bi that consequently would contain a directed triangle. Therefore, either
bi-2bi ∈ D* or bi-2→bi ∈ D*, again producing a shorter directed cycle (a, b0, ⋅⋅⋅, bi-2, bi, ⋅⋅⋅,
bk≡a) in D* such that the immorality a→b0←c occurs in D* but ab0 ∈ D**.

Thus, Cases 1 and 2 together allow us to proceed by induction to reduce to the case
where the immorality a→b←c occurs in D* but a→b occurs in a directed triangle (a, b, d)
in D* (necessarily, d ≠ c).  The only type of directed triangle (a, b, d) in D* that does not

imply the contradictory existence of an ADG D' ∈ [D] such that (a, b, d) comprises a
directed triangle in D' is pictured here:

  

a
d

b c
.

By Fact 2, there exist ADGs D1, D2 ∈ [D] with a→d, b→d in D1 and a←d, b←d in D2.
Thus there must be an edge c⋅⋅⋅d in D2.  (Otherwise d→b←c would form an immorality in
D2, forcing d→b ∈ D*, contradicting the occurrence of the undirected edge db in D*).
Since the edge c⋅⋅⋅d must be present in D1 also, it must be oriented there as c→d

(otherwise (c, b, d) would form a directed triangle).  Thus the configuration
 

a
d
b c

must occur in D1. This produces the immorality a→d←c in D 1, forcing a→d  ∈  D* ,
contradicting the occurrence of ad in D*.  This establishes Fact 3.  

Fact 4.  D* and D** have no undirected chordless k-cycles, k ≥ 4.
Proof.  If an undirected chordless k-cycle, k ≥ 4, occurs in D* or in D**, then D must
have at least one immorality in this cycle. This immorality must also occur in D*, hence,
by Fact 3, also in D**, contradicting the assumption that the cycle is undirected.  

Fact 5.  The configuration a→bc cannot occur as an induced subgraph of D** (i.e., a
and c are not linked).
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Proof.  Suppose that a→bc occurs as an induced subgraph in D**.  Then a→b ∈ D*

and hence a→b ∈ D' for all D' ∈ [D]. Thus b←c ∉ D' for all D' ∈ [D] (otherwise a→b←c

forms an immorality in D', hence in D** by Fact 3), so a→b→c occurs as an induced
subgraph in all D' ∈ [D], hence also in D*.  Therefore b→c must be part of a directed
cycle (b, c≡c0, c1, ⋅⋅⋅, ck≡b) in D* (see figure), k ≥ 2, where, for 1 ≤ i ≤ k, the edge ci-1⋅⋅⋅ci is
either ci-1ci or ci-1→ci.  (Note that c1 ≠ a, b.)

  

c c0≡c≡b k

c1

a

Case 1.  Suppose that cc1 ∈ D*.  Then there exist ADGs D1, D2 ∈  [D] such that
c→c1 ∈ D1 and c←c1 ∈  D2.  Therefore there must be an edge b⋅⋅⋅c1 in D2, (else c←c1

participates in an immorality), hence also in D1 and D*.  To avoid a directed cycle, this
edge must appear as b→c1 in D1.  If there were an edge a⋅⋅⋅c1 in D1, it must be a→c1

(otherwise (a, b, c1) would comprise a directed triangle in D1), which would imply the
immorality a→c1←c in D1, contradicting cc1 ∈ D*.  Thus, there is no edge connecting a
and c1 in D1, hence none in D*.  Therefore the edge b⋅⋅⋅c1 cannot occur in D* as bc1 (by
Fact 1) or as b←c1 (since b→c1 ∈ D1), hence b→c1 ∈ D*.  Thus a→b→c1 also occurs as an
induced subgraph in D*, so b→c1 occurs in a shorter directed cycle (b, c1,⋅⋅⋅, ck≡b) in D*.

Case 2.  Suppose that c→c1 ∈ D*.  Consider the smallest i ≥ 2 such that ci-1ci ∈ D*.
Thus ci-2→ci-1ci occurs in D*, so by Fact 1, there must be an edge ci-2⋅⋅⋅ci in D*.  As in
Case 2 of Fact 3, either ci-2ci ∈ D* or ci-2→ci ∈ D*.  Thus a→b→c0 occurs as an induced
subgraph in D*, hence b→c0 occurs in a shorter directed cycle (b, c0, ⋅⋅⋅, ci-2, ci, ⋅⋅⋅, ck≡b) in
D*.

Cases 1 and 2 together allow us to proceed by induction to reduce to the situation
where a→b→c occurs as an induced subgraph in D* but b→c participates in a directed
triangle (b, c, d) in D*:

 

a
d

b c

(necessarily, d ≠ a).  The only such directed triangle in D* that does not imply the
existence of an ADG D' ∈ [D] such that (b, c, d) comprises a directed triangle in D', is
pictured here:

 

a
d

b c .
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By Fact 2, there exist ADGs D1, D2 ∈  [D] with b→d←c in D1 and b←d→c in D2.  Thus
there must be an edge a⋅⋅⋅d in D2 (otherwise a→b←d would form an immorality in D2,
forcing b←d ∈ D*, contradicting the occurrence of the undirected edge bd ∈ D*).  The
edge a⋅⋅⋅d also must be present in D1, where it must be oriented as a→d so that (a, b, d)
does not form a directed triangle.  Thus the configuration

  

a
d
b c

must occur in D1. This produces the immorality a→d←c in D 1, forcing d←c ∈  D* ,
contradicting the occurrence of the undirected edge dc in D*.  Fact 5 is proved.  

Proof of Proposition 4.1.  (i) We know that D* ⊆ D**.  To show that that D* = D**, it
suffices to show that if an undirected edge ab ∈ D**, then also ab ∈ D*.

Let τ be the unique chain component of D** such that ab ∈ (D**)τ.  By Fact 4, (D**)τ

is a chordal UDG.  Therefore (see Appendix A) (D**)τ admits two perfect directed

versions, D1 and D2, such that a→b ∈ D1 and a←b ∈ D2.
Now assign perfect orientations to the edges within all other chain components of

D**, obtaining two directed graphs, D' and D''.  These have the same skeleton as D, D*,
and D**, and satisfy the following conditions:

(1)   All arrows in D** also occur as arrows in D' and D''.

(2)   (D')τ = D1 and (D'')τ = D2, so  ab ∈ D'∪D''.

Both D' and D'' are acyclic.  For, if D' or D'' has a directed cycle, at least one of the
arrows in this cycle must be an arrow in D** (otherwise the cycle must lie entirely
within one chain component of D**, hence cannot be directed).  Thus if we convert back
into lines all arrows in this cycle that came from lines in D**, at least one arrow remains,
giving a directed cycle in D**, contradicting its chain graph property.

Next, D' and D'' have the same immoralities as D, D*, and D**, so D' and D'' ∈ [D].
To see this, begin by noting that, since D' and D'' ⊆ D**, every immorality in D** must
also occur in D' and D''.  Suppose that  a→b←c is an immorality in D' or D''.  This
immorality could not have arisen from the configuration abc in D**, since the edges
within each chain component  of D** are perfectly oriented in D' and D'', nor, by Fact 5,
could it have arisen from the configurations a→bc or a b←c in D * *.  Thus the
immorality a→b←c must also occur in D**.
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Finally, since D' and D'' ∈ [D], necessarily D'∪D'' ⊆ D*.  But ab ∈ D'∪D'', hence
ab ∈ D*.  This completes the proof of (i).  Part (ii) follows from Fact 4.  

Proof of Proposition 4.2.  Since D* = D**, the “if” assertion is established in the proof
of Proposition 4.1. To verify “only if”, suppose that D' ∈ [D].  Then any arrow in D* also
occurs in D', while D' can have no immoralities within any chain component of D*

(since D' and D* have the same immoralities), hence the restriction of D' to each chain
component of D* is perfect.  

Proof of Proposition 4.3.  By Proposition 4.1, D* is a chain graph.  Since D and D*

have the same skeleton, by Theorem B.1 of Appendix B  it suffices to show that D and
D* have the same minimal complexes.  By Fact 3, they have the same immoralities.  By
Fact 1, D* can have no minimal complexes other than immoralities; trivially, neither can
D, since it is an ADG.  

Proof of Theorem 4.1.  (“only if”).  Proposition 4.1 implies (i) and (ii), while (iii)
follows from Fact 1.  Property (iv) will be established by means of the following two
Facts regarding the essential arrows of D :  See Section 3 for the definitions of
configurations (a) - (d) and (d').

Fact 6.  Every essential arrow a→b of D occurs in at least one of the configurations (a),
(b), (c), or (d') as an induced subgraph of D*.  Thus, a→b is irreversible in D*.
Proof. Suppose that a→b ∈ D* but satisfies neither (a), (b), (c), nor (d') in D*. Consider
the two (distinct) chain components τa and τb of D* that contain a and b, respectively.
By (ii), we can construct a directed graph D' from D* by assigning arbitrary perfect
orientations to the edges of (D*)τ for every chain component τ other than τa and τb, and

by assigning perfect orientations starting at a (resp., b) to the edges within τa (resp., τb),
so that all edges within τa (τb) that involve a (b) are oriented outward from a (b) (see
figure).  By Proposition 4.2, D' is an ADG and D' ∈ [D].

  

a b

τbτa

Now construct another directed graph D'', which is identical  to D' except that a→b

∈ D' is changed to a←b in D''.  Then D'' is also acyclic, for if it were to contain a



www.manaraa.com

18

directed cycle, then this cycle must include a←b, hence must include a subgraph a←b←c

of D'' with c ≠  a.  Necessarily c ∉  τb, since all arrows of D'' within τb are oriented
outward from b, so b←c ∈ D*.  Thus a→b←c occurs in D*, so, since a→b cannot satisfy
(b) in D*, there must be an edge a⋅⋅⋅c in D*.  This edge cannot be a→c or ac, otherwise
a→b would satisfy (c) or (d') in D*, hence must appear as a←c in D*.  Thus a←c must
also occur in D'', so the assumed directed cycle in D'' must have contained at least four
vertices.  Therefore, removing the vertex b from this cycle leaves another directed cycle
in D'', which must also occur in D' since D' and D'' coincide except for the edge a⋅⋅⋅b.
This is a contradiction, so we conclude that D'' is acyclic.

We shall show that D'' has the same immoralities as D'.  If an immorality c→a←b is
created in D'' when a→b is changed to a←b, necessarily c ∉ τa, since all arrows of D''

within τa are oriented outward from a.  Therefore c→a ∈ D*, hence c→a→b occurs as an
induced subgraph in D*, contradicting the assumed non-occurrence of (a)  in D*.  Next,
no immorality a→b←c can occur in D' , since D' and (D')* = D*  have the same
immoralities and (b) is assumed not to occur in D*. Thus D' and D'' have the same
immoralities.

It follows that D'' ∈ [D], whereby D'∪D'' ⊆ D*.  But ab ∈ D'∪D'', hence ab ∈
D*, contradicting the assumption that a→b ∈ D* and thereby establishing Fact 6.

Fact 7.  Every essential arrow of D is strongly protected in D*.
Proof.  Suppose that a→b ∈ D* but satisfies neither (a), (b), (c), nor (d) in D*. By Fact 6,
a→b occurs in configuration (d') for some c ≠ a, b.

  
Define the chain components τa and τb

as above, and define σa = {c' ∈ τa|c'→b ∈ D*}:

 

a
b

τbτa

c1

c2

σa

.

By (d'), a and c ∈ σa.  We assert that Gσa is a complete subgraph of Gτa in G ≡ D*.

Let c1, c2 be two distinct vertices in σa;  it must be shown that c1c2 ∈ D*.  Suppose
first that c2 = a.  Then an edge a⋅⋅⋅c1 must occur in D*, or else a→b would satisfy (b) in D*.
Since c1 ∈  σa, this edge must be ac1.  Next, suppose that a ≠ c1, c2.  By the first case,
ac1 ∈ D* and ac2 ∈ D*.  Therefore an edge c1⋅⋅⋅c2 must occur in D*, else a→b would
satisfy (d) in D*.  Since c1, c2 ∈ τa, this edge must be c1c2.

Construct a directed graph D' from D* as follows (see the following figure):
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(1)  For each chain  component τ  of G ≡ D* other than τa or τb, orient the edges of Gτ

 perfectly.

(2)  Assign a perfect orientation to the edges of Gτb starting at b.

(3)  Assign a perfect orientation to the edges of Gτa so that:

(α) any edge ac with c ∈ σa becomes a←c, and

(β) any edge ad with d ∈ τa\σa becomes a→d.

  

a
b

τbτa

c
c

d
d

e

It must be shown that such an orientation exists for Gτa.  Let c1, ⋅⋅⋅, cq≡a be any
ordering of the vertices in σa such that a occurs last.  Starting at c1, order the edges of Gτa

by applying Maximum Cardinality Search.  The completeness of Gσa ensures that MCS

can reproduce the initial sequence c1, ⋅⋅⋅, cq.  The resulting perfect orientation of the
edges within Gτa determined by this perfect ordering clearly satisfies (α) and (β).

By Proposition 4.2, D' is an ADG and D' ∈ [D].  Now construct a directed graph D''

which is identical to D' except that a→b ∈ D' is changed to a←b in D''.  If D'' were to
contain a directed cycle, then this cycle must include a←b, hence must include a
subgraph a←b←c of D'' with c ≠ a.  By (2), c ∉ τb, so b←c ∈ D*.  Thus a→b←c occurs in
D*, so, since a→b cannot satisfy (b) in D*, there must be an edge a⋅⋅⋅c in D*.  This edge
cannot be a→c, otherwise a→b would satisfy (c) in D*, hence must be appear as either
ac or a←c in D*.  If ac ∈ D* then c ∈ τa, hence c ∈ σa; by (α), this implies that a←c ∈
D' and therefore a←c ∈ D''.  If a←c ∈ D*, then again a←c must occur in both D' and D''.
In either case, the assumed directed cycle in D'' cannot consist of the three vertices a, b,
c alone, hence must have at least four distinct vertices.  Furthermore, since a←c ∈  D'',
removing b from this directed cycle leaves a shorter directed cycle in D'' which must
also occur in D' since D' and D'' coincide except for the edge a⋅⋅⋅b, contradicting the
acyclicity of D'.  Thus D'' is acyclic.

Now we show that D'' has the same immoralities as D'.  If a new immorality c→a←b

is created in D'' when a→b is changed to a←b, then c→a→b occurs in D'.  Necessarily c
∉ σa, for otherwise an edge c⋅⋅⋅b would occur in D*.  Also c ∉  τa\σa, otherwise, by (β),
c←a  ∈ D'.  Thus c ∉  τa, so c→a ∈ D*.  Therefore c→a→b occurs in D* as an induced
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subgraph of D*, contradicting the assumed non-occurrence of (a).  Next, no immorality
a→b←c can occur in D', since D' and (D')* = D* have the same immoralities and (b) is
assumed not to occur in D*.  Thus D' and D'' have the same immoralities, so D' ~ D''.

It follows that D'' ∈ [D], hence D'∪D'' ⊆ D*.  But ab ∈ D'∪D'', hence ab ∈ D*,
contradicting the assumed occurrence of a→b in D*.  This establishes Fact 7 and thereby
completes the proof of the “only if” assertion of Theorem 4.1.

(“if”)  Let G ≡ (V, E) be a graph that satisfies conditions (i) - (iv).  It must be shown
that G = D*  for some ADG D .  Let D  be a digraph obtained from G by assigning
arbitrary perfect orientations to the edges within each (chordal) chain component of G.
Note that D ⊆ G.  We shall show that D is an ADG and that G = D*.

Suppose first that D contains a directed cycle.  It cannot lie entirely within one chain
component of G, hence at least one of its arrows is also an arrow in G.  Therefore it
determines a directed cycle in G, contradicting (i)  Thus D is an ADG.

To show that G ⊆  D*, let D(G) be the collection of all ADGs D' constructed from G
by assigning perfect orientations to the edges within each chain component of G (that is,
all ADGs D' constructed in the same manner as D).  Clearly G ⊇ D', so G ⊇ ∪(D'|D' ∈
D(G)).  Furthermore, any line ab ∈ G lies in Gτ for some chain component τ of G.  By
(ii), there exist two perfect orientations of the edges in Gτ , one with a→b and one with

a←b, so G = ∪(D'|D' ∈ D(G)).  By (ii) and (iii), no immorality in D' or D can involve an
arrow that had been a line in G, i.e., an arrow that lies within a chain component of G.
Thus any immorality in D' or D  is an immorality in G and conversely, so D' ~ D .
Therefore ∪(D'|D' ∈ D(G)) ⊆ ∪(D'|D' ~ D) ≡ D*, so G ⊆ D*.   It remains to show that G
= D*.

For this, it suffices to show that

A := {a ∈ V|∃ b ∈ V ∋ a→b ∈ G and ab ∈ D*} = ∅.

If not, let a be a minimal element of A with respect to the pre-ordering (V, ≤) determined
by the chain graph G.  Since a ∈ A,

B := {b ∈ V|a→b ∈ G and ab ∈ D*} ≠ ∅.

Let b be a minimal element of B; then a→b ∈ G and ab ∈ D*.  By (iv), a→b occurs in at
least one of the configurations (a), (b), (c), or (d) as an induced subgraph of G.  If (a)
were to occur in G, then, since a is minimal in A, ca ∉ D*, hence c→a ∈ D*.  But then
c→ab occurs as an induced subgraph of D*, which is impossible by Fact 1.  If (b) were
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to occur in G, then it must also occur in D, so a→b ∈ D*, which is also impossible.  If (c)
were to occur in G, then the minimality of b implies that ac ∉ D*.  Since G ⊆ D*, one of
the following two directed triangles must occur in D*, again impossible:

  

a
c

b     or   

  

a
c

b .

If (d) were to occur in G, then D* would contain two directed triangles, also impossible.
Thus A = ∅, hence G = D*.  The proof of Theorem 4.1 is complete.  

Proof of Proposition 4.4.  By hypothesis, the set

B: = {b' ∈ V|a→b' ∈ G}

is nonempty.  Let c be any minimal element of B with respect to the pre-ordering (V, ≤)
determined by the chain graph G.  Since a→c is an initial arrow of G, it cannot occur in
configuration (a) in G, nor can it occur in configuration (c), by the minimality of c.  By
Theorem 4.1(iv), therefore, a→c must occur in configuration (b) or (d) as an induced
subgraph of G.  

Proof of Proposition 4.5.  It suffices to establish the result when H has no edges, i.e., H
= (V, ∅).  First assume that G contains at least one line (≡ undirected edge), so G ≡  G1

has at least one chain component τ with at least two vertices.  Since Gτ is chordal, it has
at least one simplicial vertex a (cf. Blair and Peyton (1993, Lemma 2.2)); since Gτ is
connected, bdGτ (a) ≠ ∅.  Choose any b ∈ bdGτ (a), so that ab ∈ Gτ, then remove the line

connecting a and b to produce a graph G2.  Since a was simplicial in Gτ, (G2)τ is also

chordal.  Because G1 is an essential graph, it is now straightforward to verify that G2

satisfies the conditions of Theorem 4.1, hence G2 is also an essential graph.  Continue
this process (i) of single line removal until reaching an essential graph Gj with no lines.
(A related argument appears in Lemma 5 of Frydenberg and Lauritzen (1989).)

If Gj has no arrows (≡ directed edges), then Gj = H and we are done.  Otherwise, we
can reach H ≡ (V, ∅) by removing arrows from  the ADG Gj according to (ii) or (iii) as
follows.  Let B (≠ ∅) be the set of all terminal vertices of Gj, i.e., the set of all b ∈ V such
that b is maximal in V with respect to the ordering (V, ≤) determined by the ADG Gj.
Since Gj has at least one arrow, there must exist at least one b ∈ B such that A  := {a ∈
V|a→b ∈ Gj} ≠ ∅.  Define A0 := {a ∈ V|a is minimal in A} (≠ ∅).  By Corollary 4.2, every
arrow in Gj is protected in Gj.  If A0 contains only one vertex a, the minimality of a and
the maximality of b imply that removal of the arrow a→b cannot leave any other arrow
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unprotected in the resulting ADG.  If A0 contains two or more vertices, their minimality
implies that no two are adjacent in Gj.  As in the first case, it follows that the arrows that
these vertices form with b can be removed singly, until only two remain, and then either
singly or as a pair (Note 6), in such a way that after each removal all remaining arrows
are protected in the resulting ADG.  Again by Corollary 4.2, each such ADG is an
essential graph.  This process can be continued until A0 is exhausted, so that b becomes
an isolated vertex in the resulting essential graph.  Now consider the set of terminal
vertices in this new essential graph and repeat the arrow removal process.  Eventually
all arrows can be removed and H will be reached.  The proof is complete.   

5.  Construction of the Essential Graph D*.

We now present a polynomial-time algorithm to construct the essential graph D* from
an ADG D ≡ (V, E).  This algorithm does not require an exhaustive search over the entire
equivalence class [D].

The Construction Algorithm.  Define G0 := D.  For i ≥ 1, convert every arrow a→b ∈
Gi-1 that is not strongly protected in Gi-1 into a line ab, obtaining a graph Gi.  Stop after
k steps, where k ≥ 0 is the smallest nonnegative integer such that Gk = Gk+1.  Necessarily,
k ≤ |E|.

This algorithm produces a sequence G0,  ⋅⋅⋅, Gk of graphs such that

(5.1)                                              D ≡ G0 ⊂ ⋅⋅⋅ ⊂ Gk = Gk+1.

Since both arrows of an immorality are strongly protected, each Gi has the same
immoralities as D and D*.  Let n = |V|.  Because the determination of the set of arrows
that are not strongly protected in Gi-1 requires at most O(n4) operations and because
|E| = O(n2), this algorithm requires at most O(n6) operations, although it can be
implemented in a more efficient fashion.

Theorem 5.1  (Validity of the Construction Algorithm).  Gk = D*.
Proof.  If k = 0 (i.e., if every arrow of D is protected in D) then the result follows from
Corollary 4.2.  Thus we may assume that k ≥ 1.
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We begin by showing that Gk ⊆ D*.  First, by (5.1), a→b ∈ Gk ⇒ a→b ∈ D ⇒ a←b ∉
D* ⇒ either a→b ∈ D* or ab ∈ D*.  It remains to show that ab ∈ Gk ⇒ ab ∈ D*.  We
shall accomplish this by proving that

B := {b ∈ V|∃ a ∈ V ∋ ab ∈ Gk and a→b ∈ D*} = ∅.

Suppose that B  ≠ ∅ .  Let b0 be a minimal element of B with respect to the pre-
ordering (V, ≤) determined by the chain graph D*.  Therefore

A := {a ∈ V|ab0 ∈ Gk and a→b0 ∈ D*} ≠ ∅.

For a ∈ A, let i(a) ∈ {1, ⋅⋅⋅, k} be the unique integer such that a→b0 ∈ Gi(a)-1 but ab0 ∈
Gi(a).  Choose a0 ∈  A  to minimize i(a) over A. Thus, for no a ∈ A  is a→b0 converted to
ab0 before a0→b0 is converted to a0b0 in the sequence G0, G1, ⋅⋅⋅, Gk.  Therefore, a0 and
b0 satisfy the following four properties:

(1)  a0b0 ∈ Gk and a0→b0 ∈ D*;

(2)  a0→b0 ∈ Gi(a0)-1 but a0b0 ∈ Gi(a0), i.e., a0→b0 is not strongly protected in Gi(a0)-1;

(3)  if a→b0 ∈ D* but ab0 ∈ Gk, then a→b0 ∈ Gi(a0)-1;

(4)  if b < b0 in D*, then for every a ∈ V either ab ∉ Gk or a→b ∉ D*.

By Theorem 4.1(iv), a0→b0 ∈  D* must occur in at least one of the following four
configurations as an induced subgraph of D*:

(a):

 

c
b0a0    (b):

 

c
b0a0     (c):

  

c
b0a0     (d):

  

c

c1

2

a0 b0 (c1 ≠ c2).

However, each of these four possibilities leads to a contradiction:

(a):  If c→a0→b0 occurs as an induced subgraph of D*, apply (4) with b = a0 and a = c
to conclude that ca0 ∉  Gk.  But c→a0 ∈  D* ⇒ c→a0 ∈ D   ⊂ Gk, hence c→a0 ∈  Gk.  By
(5.1), c→a0 ∈ Gi(a0)-1, so by (2), c→a0→b0 occurs as an induced subgraph of Gi(a0)-1. This
implies that a0→b0 is strongly protected in Gi(a0)-1, which contradicts (2).

(b):  The occurrence of the immorality a0→b0←c in D* implies its occurrence in D
≡ G0.  Thus both a0→b0 and b0←c are strongly protected in G0, hence in G1, ⋅⋅⋅, Gk-1.
Therefore a0→b0 ∈ Gk, which contradicts (1).
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(c):  Here, necessarily c→b0 ∈ D.  By (5.1), either c→b0 ∈ Gk or cb0 ∈ Gk.  In the first
case, c→b0 ∈ Gi(a0)-1; in the second case, apply (3) with a  = c to reach the same

conclusion.  Together with (2), this implies that one of the following three
configurations must occur in Gi(a0)-1:

  

c
b0a0     or    

 

c
b0a0     or    

  

c
b0a0 .

The first configuration is impossible, since a0→c ∈ D* ⇒ a0→c ∈ D ⊆ Gi(a0)-1.  The second
configuration is impossible, for otherwise a0→b0 is strongly protected in Gi(a0)-1,

contradicting (2).  If the third configuration holds, apply (4) with b = c and a  = a0 to
deduce that a0c ∉ G k, which contradicts the fact that a0c ∈  Gi(a0)-1 in this

configuration.
(d):  If this configuration occurs as an induced subgraph of D*, then the immorality
c1→b0←c2 must occur in D and hence in G1, ⋅⋅⋅, Gk.   Together with (2), this implies that

  

c

c1

2

a b0

occurs in Gi(a0)-1 but that a0→b0 is not strongly protected in Gi(a0)-1.  Therefore, one of the
following three configurations must occur as an induced subgraph of Gi(a0)-1:

  

c

c1

2

a0 b0    or   

 

c

c1

2

a0 b0     or   

 

c

c1

2

a0 b0 .

In the first case the immorality c1→a0←c2 occurs in D and therefore in D*, contradicting
the assumed occurrence of c1a0c2 in D*.  In the second case, either c1→a0←c2 or
c1→a0→c2 must occur as an induced subgraph of D.  As before, the immorality leads to
a contradiction, so c1→a0→c2 must occur as an induced subgraph of D and hence of G1,
⋅⋅⋅, Gi(a0)-2.  Therefore a0→c2 is strongly protected in Gi(a0)-2, contradicting the occurrence
of a0c2 in Gi(a0)-1 in this case.  The third case is similar to the second.

Thus, each of the four possible configurations (a), (b), (c), (d) leads to a contradiction,
so B = ∅, hence Gk ⊆ D*.  It remains to show that Gk = D*.  For this purpose it suffices to
show that

B' := {b ∈ V|∃ a ∈ V ∋ a→b ∈ Gk and ab ∈ D*} = ∅.
Suppose that B' ≠ ∅.  Let b0 be a minimal element of B' with respect to the partial

ordering (V, ≤) determined by the ADG D (not D*).  (Since D ⊆ Gk, this partial ordering
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is compatible with arrows in Gk, i.e., a→b ∈  Gk ⇒  a < b ∈  D.)  Thus there exists a ∈ V
such that a→b0 ∈ Gk and ab0 ∈ D*.

Since a→b0 ∈ Gk, a→b0 must be strongly protected in Gk, hence must occur in one of
the following four configurations as an induced subgraph of Gk:

(a):

  

b0a
c    (b):

  

b0a
c     (c):

 

a
c

b0     (d):

  

c

c1

2

a b0 (c1 ≠ c2).

(a):  If c→a→b0 occurs as an induced subgraph of Gk, then it also occurs as such in D.
The minimality of b0 then implies that c→a ∈ D*, hence c→ab0 occurs as an induced
subgraph of D*, contradicting Fact 1.

(b):  The occurrence of the immorality a→b0←c in Gk implies its occurrence in D and
hence in D*, contradicting the fact that ab0 ∈ D*.

(c):  If configuration (c) occurs in Gk, the minimality of b0 implies that a→c ∈ D*.
Since Gk ⊆ D* and ab0 ∈ D*, one of the following two directed triangles must occur in
D*, contradicting Proposition 4.1.

 

a
c

b0    or   

  

a
c

b0 .

(d):  If configuration (d) occurs as an induced subgraph of Gk, then the configuration
 

c

c1

2

a b0

must occur as an induced subgraph of D* .  This forces the occurrence of the
configuration

 

c

c1

2

a b0

in D* (otherwise D* would contain a directed triangle). Since D ⊆ D*, the immorality
c1→a←c2 must occur in D and therefore in Gk, contradicting the assumed occurrence of
c1ac2 in Gk.

Each of the four possible configurations (a), (b), (c), (d) has led to a contradiction, so
B' = ∅.  Therefore Gk = D* and the proof of Theorem 5.1 is  complete.  
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Remark 5.1.  The Construction Algorithm becomes invalid if “strongly protected” is
replaced by “protected”.  The following ADG D provides a counterexample:

D:

  

a
b

c
d          D*:

 

a
b

c
d          G':

  

a
b

c
d

The valid algorithm produces D* from D after k = 2 steps, while the invalid version
stops at G' after k = 2 steps.  

6.  A Brief Catalog of Essential Graphs.

By Theorem 4.1, essential graphs may be viewed as generalizations of chordal graphs.
Darroch et al (1980) give a brief catalog of chordal (≡ decomposable) graphs; here we do
the same for essential graphs with n ≤ 4 vertices.  In Table 6.1 we list all such unlabelled

essential graphs (Note 7) together with their corresponding global Markov properties
(Note 8), then we simply enumerate the corresponding labelled essential graphs D* and
the corresponding labelled ADGs D’ in the equivalence class [D].  In applications, of
course, different labelled essential graphs represent different statistical models, whereas
different labelled ADGs D’ corresponding to the same labelled essential graph represent
the same statistical model.

Thus, for example, the second essential graph listed in Table 6.1 corresponds to one
labelled D*:  12; and to two labelled D’:  1→2 and 1←2.  The fifth essential graph in
Table 6.1 corresponds to three labelled D * :  1 2 3, 1 3 2, 231, each
representing a different statistical model; and to nine labelled D’:  1→ 2→3, 1←2←3,
1←2→3, 1→3→2, 1←3←2, 1←3→2, 2→1→3, 2←1←3, 2←1→3, representing the same
three models.

For n = 5 vertices, we have utilized a computer search to find that the total numbers
of labelled essential graphs and labelled ADGs are 8,782 and 29,281, respectively.
Robinson (1976) gives a recursive formula for the number of labelled ADGs, from which
it follows that there are 3,781,503 labelled ADGs for n = 6 vertices, but at present no
formula is available for the number of labelled essential graphs.  It would be of interest
to determine the asymptotic behavior of the ratio of these numbers as n approaches
infinity.
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Table 6.1:  Essential graphs with n = 2, 3, and 4 vertices.
____________________________________________________________________________

Essential
graph

—————

Markov
 property

—————

No. of labelled
essential graphs

———————

No. of
labelled ADGs
——————

n=2
  

21
1 ⊥ 2 1 1

  

21
(None) 1 2

________________
Totals:

_______________
2

________________
3

________________

n=3
  

21 3
1 ⊥ 2 ⊥ 3 1 1

  

21 3
(1,2) ⊥ 3 3 6

  

21 3
1 ⊥ 3|2 3 9

  

21 3
1 ⊥ 3 3 3

  

31

2
(None) 1 6

________________
Totals:

________________
11

________________
25

________________
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n=4
  

21 3 4
1 ⊥ 2 ⊥ 3 ⊥ 4 1 1

  

21 3 4
(1,2) ⊥ 3 ⊥ 4 6 12

  

21 3 4
(1,2) ⊥ (3,4) 3 12

  

21 3 4
1 ⊥ 3 | 2

(1,2,3) ⊥ 4
12 36

  

21 3 4
1 ⊥ 3

(1,2,3) ⊥ 4
12 12

  

31

2

4

(1,2,3) ⊥ 4 4 24

  

21 3 4
1 ⊥ 3 | 2

(1,2) ⊥ 4 | 3
12 48

  

21 3 4
1 ⊥ (3,4)
2 ⊥ 4 | 1,3

24 48

  

21 4

3
1 ⊥ (3,4) | 2
(1,3) ⊥ 4 | 2

4 16

  

21 4

3
1 ⊥ 3

(1,3) ⊥ 4 | 2
12 12

  

21 4

3
1 ⊥ 3 ⊥ 4 4 4

  

3

1
2 4

(1,3) ⊥ 4 | 2 12 96

  

3

1
2 4

(1,3) ⊥ 4 12 24
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3

1
2 4

1 ⊥ 4
3 ⊥ 4 | 1,2

24 24

  

2

1

4

3

2 ⊥ 3|1
1 ⊥ 4 | 2,3

12 36

  

2

1

4

3

2 ⊥ 3
1 ⊥ 4 | 2,3

6 6

  

2

1

4

3

2 ⊥ 3 | 1,4 6 60

  

2

1

4

3

2 ⊥ 3 | 1 12 36

  

2

1

4

3

2 ⊥ 3 6 12

  

2

1

4

3

(None) 1 24

Totals: 185 543

——————————————————————————————————————
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7.  Model Selection and Model Averaging for Acyclic Digraphs.

By focusing on Markov-equivalence classes of ADGs rather than on the individual
ADGs themselves, data analysts and expert system builders can overcome several
difficulties associated with ADG models.  Three such difficulties were listed in Section 1
- here we examine these in more detail and indicate how the introduction of essential
graphs can help to overcome them.

1.  Heckerman et al (1994) and Chickering (1995) argue that statistical inference for ADG
models should be “score equivalent”:  in the absence of a priori causal knowledge,
Markov-equivalent ADGs should have identical posterior model probabilities
(Bayesian) or identical penalized likelihoods (non-Bayesian).  Under this criterion,
therefore, model selection and model averaging algorithms need visit each Markov-
equivalence class only once.  However, standard algorithms (e.g., Madigan and Raftery
(1994), Madigan and York (1995), Heckerman et al (1994)) fail to treat each Markov-
equivalence class of ADGs as a single statistical model and search in the space of ADGs,
introducing considerable computational inefficiency.  For example, an exhaustive
search amongst all ADGs on four variables would require the calculation of posterior
probabilities for all 543 such ADGs, whereas a search over the space of essential graphs
(in 1-1 correspondence with the equivalence classes) would require only 185 such
calculations.  For five variables the numbers become 8,782 and 29,281, respectively.

2.  For a Bayesian analysis over the space of all individual ADG models with a fixed
vertex set V, score equivalence imposes severe restrictions on the prior distributions
that may be used to represent prior knowledge about the parameters these models.  For
any individual ADG D, the joint pdf (if it exists) of a global D-Markovian distribution
admits the factorization (cf. Lauritzen et al (1990, Theorem 1))

(7.1)                                               f(V) = ∏(f(a|paD(a))|a ∈ V).

For categorical data (Note 9), where each conditional pdf f(a|paD(a)) is multinomial,
Spiegelhalter and Lauritzen (1990) proposed the now-widely accepted conjugate family
of Dirichlet prior distributions for the parameters occurring in these conditional
multinomial distributions.  However, Heckerman et al (1994) show that score
equivalence requires that the sum of the parameters of all the Dirichlet distributions associated

with each a ∈ V (ie, the Dirichlet distributions for each of the levels of paD(a)) be identical for all

a ∈ V .  Since these sums behave as “equivalent sample sizes” in subsequent Bayesian
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updating, this constraint severely restricts an “expert” with more prior knowledge
about some variables than others - he must use a single equivalent sample size for each

of the Dirichlet distributions occurring in the conjugate prior, and is therefore unable
fully to utilize his prior knowledge.

This difficulty can be overcome by constructing prior distributions over Markov-
equivalence classes of ADG models, rather than over the individual ADG models
themselves.  To accomplish this, represent each equivalence class [D] by its essential
graph D*, then select appropriate prior distributions for the parameters of the chain
graph model determined by D*.  More precisely, by Theorem 4.1(ii) of Frydenberg
(1990), the joint pdf (if it exists and is positive) of a global D*-Markovian distribution P
admits the factorization

(7.2)                                               f(V) = ∏(f(τ|bdD*(τ))|τ ∈ T(D*)),

where, further, each marginal pdf f(clD*(τ)) is global [(D*)clD*(τ)]m-Markovian. This in turn

implies that each conditional pdf f(τ|bdD*(τ)) is global (D*)τ-Markovian (Note 10).  But
by our Theorem 4.1(ii), each (D*)τ is chordal (≡ decomposable), so therefore we can

utilize hyper-Dirichlet distributions as prior distributions for the parameters occurring in
these conditional pdfs (Note 11).  Since score equivalence is no longer an issue, no

constraints are required on the parameters of these hyper-Dirichlet priors.
Furthermore, although the Dirichlet and hyper-Dirichlet families provide

considerable flexibility for modelling prior knowledge in the Bayesian analysis of
categorical data, more general priors, such as mixtures of Dirichlet distributions,
sometimes may be needed to adequately reflect prior knowledge (Bernardo and Smith
(1994), p.279).  When working in the space of individual ADG models, however, Geiger
and Heckerman (1995) show that the Dirichlet family is the only family of prior

distributions that can be used to achieve score  equivalence.  Working in the space of
Markov-equivalence classes, conveniently represented by essential graphs, eliminates
the issue of score equivalence and therefore allows the adoption of arbitrary prior
distributions on the associated parameters, at least in principle.

3.  Madigan and Raftery (1994) and others have argued that basing inference on a single
model ignores model uncertainty and leads to poorly calibrated predictions.  Bayesian
model averaging (BMA) provides a remedy:  current BMA procedures average
inferences or predictions over all models in the class under consideration, or at least
over a subset of the models that receive substantial posterior weight (see Madigan and
York (1995) for a review.)  When applied naively to ADG models, however, BMA
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assigns a weight to each Markov-equivalence class that is proportional to its size.
Instead, averaging directly over equivalence classes overcomes this problem.

A stochastic search scheme over the space of ADGs based on the Metropolis-
Hastings algorithm has been proposed for Bayesian model averaging by Madigan and
York (1995) (Note 12).  As suggested by the final paragraph of Section 6, the number of
essential graphs on n vertices, although substantially smaller than the number of ADGs,
will still be too large in most applications to allow an exhaustive analysis (Note 13),
hence search procedures over the space of essential graphs also will be required.

Madigan et al (1996) describe several stochastic search procedures for model
selection and model averaging, again based on the Metropolis-Hastings algorithm, that
act directly on essential graphs rather than ADGs.  Such procedures move through the
space of essential graphs according to a Markov chain whose transition probabilities are
chosen to achieve a desired stationary distribution.  Convergence to the stationary
distribution requires that the Markov chain be irreducible and aperiodic.  By
Proposition 4.5, irreducibility will hold whenever the chain has positive probability of
moving to any essential graph that differs by at most two edges from the current essential
graph.  However, it follows from the proof of Proposition 4.5 that in fact irreducibility
will hold whenever the chain has positive probability of moving from the current
essential graph to each essential graph

(a) that differs by exactly one edge from the current graph; or
(b) that is obtained from the current graph by deleting both arrows in an immorality

a→b←c, where b is a terminal vertex of the current graph and where a and c are the
only parents of b in the current graph; or

(c) that is obtained from the current graph by adding two arrows to form an immorality
a→b←c, where b is an isolated vertex of the current graph and where a and c are not
adjacent in the current graph.

Aperiodicity can be guaranteed, for example, by ensuring that the chain has positive
probability of remaining in its current state.

Non-stochastic model selection and model averaging schemes based on essential
graphs also can be developed, analogous to those proposed by Heckerman et al (1994)
and Madigan and Raftery (1994) for ADGs.

Appendix  A:  Graphs.
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Our terminology and notation closely follows those of Lauritzen et al (1990) and
Frydenberg (1990), with one exception noted below.  A graph G is a pair (V, E), where V
is a finite set of vertices and E,  the set of edges, is a subset of E*(V) ≡ (V×V)\{(a, a)|a ∈ V},
i.e., a set of ordered pairs of distinct vertices; thus our graphs include no loops or
multiple edges.  An edge (a, b) ∈ E whose opposite (b, a) ∈ E is called an undirected edge
and appears as a line ab in our figures, whereas an edge (a, b) ∈ E whose opposite (b,
a) ∉ E is called a directed edge and appears as an arrow:  a→b (Note 14).  If G  contains
only undirected edges, it is an undirected graph (UDG); if G contains only directed edges
it is a directed graph (digraph).

It shall be convenient to write  “a→b ∈ G” to indicate that (a, b) ∈ E but (b, a) ∉ E; in
this case we say that the arrow a→b occurs in G.  Similarly, we write “ab ∈  G” to
indicate that (a, b) ∈ E and (b, a) ∈ E; in this case we say that the line ab occurs in G.  We
write “a⋅⋅⋅b ∈ G” to indicate that there is an edge of some type between a and b in G.

For each vertex a ∈V, define paG(a) := {b ∈ V|b→a ∈ G}, the set of parents of a in G.
For any subset A ⊆ V, the boundary of A in G is the set bdG(A) := {b ∈ V\A|(b, a) ∈ E for
some a  ∈ A}; the closure of A in G is the set clG(A) := bdG(A)∪A.

A subset A ⊆ V induces the subgraph GA := (A, EA), where EA := E∩(A×A).
The skeleton Gu of a graph G ≡ (V, E) is its underlying undirected graph, i.e., Gu := (V,

Eu), where Eu := {(a, b)|(a, b) ∈ E or (b, a) ∈ E}.  Two vertices a, b are called adjacent in G if
(a, b) ∈ Eu, or, equivalently, if a⋅⋅⋅b ∈ G.  A vertex a is isolated if it is not adjacent to any b.

Let a, b, and c be three distinct vertices of G ≡ (V, E).  The triple (a, b, c) is called an
immorality of G if the induced subgraph G{a, b, c} is a→b←c; that is, if the “parents” a and c
of b are “unmarried” (≡ non-adjacent).

A graph G2 ≡ (V2, E2) i s said to be larger than a graph G1≡ (V1, E1), denoted by G1 ⊆
G2, if V1⊆ V2 and E1⊆ E2.  Thus, if  (G1)u = (G2)u, then G1 ⊆ G2 iff G1 and G2 differ only in
that some directed edges (arrows) in G1 may be converted into undirected edges (lines)
in G2.  We write G1 ⊂ G2 if G1 ⊆ G2 but G1 ≠ G2.

The union  of a finite collection of subgraphs {Gi ≡ (Vi, Ei)|i = 1, ⋅⋅⋅, n}, of G ≡ (V, E) is
the subgraph ∪Gi := (∪Vi , ∪Ei ).  Clearly, ∪Gi is the smallest subgraph larger than each
Gi, i = 1, ⋅⋅⋅, n.

Let a, b be distinct vertices in G ≡ (V, E).  A path π of length n ≥ 1 from a to b in G is a
sequence π ≡ {a0, a1, ⋅⋅⋅, an} ⊆ V of distinct vertices such that such that a0 = a, an = b, and
either ai-1→ai ∈ G or ai-1ai ∈ G for every i = 1, ⋅⋅⋅, n.  If ai-1→ai ∈ G for at least one i, the
path is directed; if this is not the case, the path is undirected.  A (directed) cycle is a
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(directed) path with the modification that a0 = an.  An arrow a→b ∈ G is said to block a

directed cycle in G if there is a directed path from a to b in G other than a→b itself.
A UDG G ≡ (V, E) is complete if all pairs of vertices are adjacent.  Trivially, the empty

graph is complete.  A subset A ⊆ V is complete if its induced subgraph GA is complete.  A
complete subset that is maximal with respect to inclusion is called a clique.  A vertex a is
simplicial if its boundary bdG(a) is complete.  A subset A ⊆ V is connected in G if for every
distinct pair a, b ∈ A, there is a path from a to b in GA.  For pairwise disjoint subsets A (≠
∅), B (≠ ∅), and S of V, A and B are separated by S in G if all paths from vertices in A to
vertices in B intersect S.

The UDG G ≡ (V, E) is chordal if every cycle of length n ≥ 4 possesses a chord, that is,
two non-consecutive adjacent vertices.  A total ordering of V is a perfect ordering of G if,
when each edge of G is oriented in accordance with this ordering, the resulting ADG D
is perfect, i.e., is acyclic and moral (without immoralities); D is called a perfect directed

version of G.  It is well-known that a UDG admits a perfect directed version if and only if
it is chordal (cf. Blair and Peyton (1993)).  Furthermore, such a perfect orientation of a
chordal UDG G is not unique:  in fact, by using maximum cardinality search (MCS) (cf.
Blair and Peyton (1993)), the perfect ordering can be started at any vertex in G.  Thus, for
any distinct vertices a, b ∈ V, a chordal UDG G admits two perfect directed versions, say
D1 and D2, such that a→b ∈ D1 and a←b ∈ D2.

A graph G ≡ (V, E) is called a chain graph (≡ adicyclic graph) if it contains no directed
cycles.  Every induced subgraph GA of G is also a chain graph.  Any UDG is trivially a
chain graph.  A chain graph that is also a digraph is called an acyclic digraph (ADG).

An ADG D is transitive if a→c ∈ D whenever a→b ∈ D and b→c ∈ D.
For the remainder of Appendix A, let G  ≡  (V, E ) be a chain graph.  Then G

determines a pre-ordering (V, ≤) as follows:  a ≤ b iff a = b or there exists a path from a to
b in G.  A subset A ⊆ V is an anterior set if b ≤ a ∈ A ⇒ b ∈ A.  For a subset A ⊆ V, An(A)
denotes the smallest anterior set containing A:  An(A) = {b ∈ V|b ≤ a for some a ∈ A}.

If both a  ≤ b and b  ≤ a then we write a  ≈ b, which occurs iff a  = b or there is an
undirected path from a  to b in G .  Frydenberg (1990) notes that ≈ is an equivalence
relation on V; we denote the set of equivalence classes in V by T(G).  Equivalently, T(G)
is the set of connected components of the undirected graph obtained from G by
removing all directed edges.  Each τ ∈ T(G) is called a chain component of G.  A
connected UDG has only one chain component, while for an ADG, every chain
component consists of a single vertex.

We write a < b if there exists a directed path from a to b.  The future of a vertex a ∈ V is
the set φ(a) := {b ∈ V|a < b}.
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A triple (a, C , b) is called a complex in G  if C  is a connected subset of a chain
component τ ∈ T(G) and a and b are two non-adjacent vertices in bdG(τ)∩bdG(C).  A
complex (a, C , b) is called a minimal complex in G if no proper subset C' ⊂ C forms a
complex (a, C', b) in G.  Frydenberg(1990) notes that (a, C, b) is a minimal complex in G
iff GC∪{a, b} looks like the chain graph of Figure A.1.  An immorality is the special case of

a minimal complex where |C| = 1.

 

a b

C

Figure A.1:  A simple chain graph.  Here (a, C, b) is a minimal complex.

The moral graph determined by G is the undirected graph Gm ≡ (V, Em), where Em :=
Eu∪[∪(E*(bdG(τ))|τ ∈ T (G))].  That is, Gm  is Gu augmented by all undirected edges
needed to make bdG(τ) complete in Gm  for every chain component τ  ∈  T (G).
Equivalently, Gm is obtained from Gu by adding a line ab whenever (a, C , b) is a
minimal complex in G.

Appendix  B:  Graphical Markov Models and Markov Equivalence.

We consider multivariate probability distributions P on a product probability space X ≡
×(Xa|a ∈ V), where V is a finite index set and each Xa is sufficiently regular to ensure
the existence of regular conditional probabilities.  Such distributions are conveniently
represented by a random variate X := (Xa|a ∈ V) ∈ X.  For any subset A ⊆ V, we define

XA := (Xa|a ∈ A).  Often we abbreviate Xa and XA by a and A, respectively, and define
X∅ ≡ constant.

For three pairwise disjoint subsets A, B, and C of V, we write A⊥B|C[P] to indicate
that XA and XB are conditionally independent given XC under P.

A graphical Markov model is defined by a collection of conditional independencies
among the component random variates (Xa|a ∈ V), which collection is represented by a
chain graph G ≡ (V, E) with vertex set V:

Definition B.1.  A probability measure P  on X  is said to be local G-Markovian if
a ⊥[V\φ(a)]\clG(a)|bdG(a)[P] ∀ a ∈ A.
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Definition B.2.  A probability measure P  on X is said to be global G-Markovian if
A⊥B|S[P] whenever S separates A and B in (GAn(A∪B∪S))m.

Frydenberg (1990, p.339) notes that global G-Markovian ⇒ local G-Markovian.  The
converse is not true in general, e.g, Andersson et al (1996a, Remark A.1), but Lauritzen et

al (1990, Proposition 4) show that the converse is valid if G is an ADG.
We define the graphical Markov model on X determined by a chain graph G to be the

set of all global G-Markovian probability measures on X.  (In applications, an additional
parametric assumption, such as multivariate normality, is often imposed.)

Definition B.3.  Two chain graphs G1 and G2 are Markov equivalent on a product space
X  indexed by V if the classes of global G 1-Markovian and global G2-Markovian
probability measures on X coincide.  If G1 and G2 are Markov equivalent on every such
product space X, G1 and G2 are called Markov equivalent.

The following basic result concerning Markov equivalence of chain graphs was first
proved by Frydenberg (1990, Theorem 5.6) for a restricted class of probability measures
and by Andersson et al (1996a, Theorem 3.1) for the general case.  We shall say that two
chain graphs are graphically equivalent if they have the same skeleton and the same
minimal complexes.

Theorem B.1.  Suppose that for each a ∈ V, the component space Xa  of X contains at
least two points. Then two chain graphs G1 and G2 are Markov equivalent on X if and
only if they have the same skeleton and the same minimal complexes.  Thus, G1 and G2

are Markov equivalent if and only if they are graphically equivalent.

Since the only possible minimal complexes in an ADG are immoralities, Theorem
2.1, the key equivalence theorem for ADGs, follows from Theorem B.1 as a special case.
Because the proof of Theorem B.1 is quite complex, however, we present here a direct
proof of Theorem 2.1, different from that of Verma and Pearl (1992) in that their notion
of “d-separation” is not used.

We require the notion of a well-numbering (≡ topological sort) of an ADG D ≡ (V, E),
namely, a 1-1 mapping ν: V → {1, ⋅⋅⋅, n}, n ≡ |V|, such that c → d in D ⇒ ν(c) < ν(d).  A
straightforward inductive argument shows that every ADG admits at least one well-
numbering.  Propositions 4 and 5 of Lauritzen et al (1990) together imply that a
probability measure P  on X  is global D-Markovian if and only if, for some (and,
therefore, for every) well-numbering ν of D,
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(B.1)                               c ⊥ {d ∈ V|ν(d) < ν(c)}\paD(c)|paD(c)[P]     ∀ c ∈ V.

Proof of Theorem 2.1.  (“if”) Suppose that D and D’ are two ADGs with the same
skeleton and same immoralities.  In order to show that D and D’ are Markov equivalent,
by Lemma 3.2 we may assume in addition that D and D’ differ in exactly one edge, say
a→b ∈ D but b→a ∈ D ‘.  By Lemma 3.1(ii), a→b is reversible, and therefore unprotected,
in D, i.e., paD(a) = paD(b)\{a}.  It follows that for some well-numbering1 ν  of D, ν(b) =
ν(a) + 1.  This can then be applied to show2 that ν’: V → {1, ⋅⋅⋅, n}  is a well-numbering of
D’, where ν’ is defined as follows:  ν’(a ) = ν(b), ν’(b) = ν(a), ν’(c) = ν (c) if c ≠ a , b.
Therefore, a probability measure P on X is global D’-Markovian if and only if

(B.2)                               c ⊥ {d ∈ V|ν’(d) < ν’(c)}\paD’(c)|paD’(c)[P]     ∀ c ∈ V.

Since D and D’ differ only in the edge a⋅⋅⋅b, paD(c) = paD’(c) if c ≠ a, b, so the conditions in
(B.1) and (B.2) coincide when c ≠ a, b.  The remaining conditions in (B.1) and (B.2) are

(B.3)                               a ⊥ {d ∈ V|ν(d) < ν(a)}\paD(a)|paD(a)[P]

(B.4)                               b ⊥ {d ∈ V|ν(d) < ν(b)}\paD(b)|paD(b)[P]

and

(B.5)                               a ⊥ {d ∈ V|ν’(d) < ν’(a)}\paD’(a)|paD’(a)[P]

(B.6)                               b ⊥ {d ∈ V|ν’(d) < ν’(b)}\paD’(b)|paD’(b)[P],

respectively.  Since paD’(a) = paD(a)∪{b} and paD’(b) =  paD(b)\{a}, (B.5) and (B.6) can be
rewritten as

(B.7)                               a ⊥ {d ∈ V|ν(d) < ν(a)}\paD(a)|[paD(a)∪{b}][P]

(B.8)                               b ⊥ {d ∈ V|ν(d) < ν(b)}\paD(b)|[paD(b)\{a}][P].

                                                
1Let γ  be any well-numbering for D; note that γ(a) < γ(b).  If  γ(b) > γ (a) +1, define ν(a) = γ (a), ν(b) = γ (a)
+1,  ν(c) = γ (c) +1 if γ (a) < γ (c) < γ (b), and ν(c) = γ (c) otherwise.  To verify that ν is also a well-numbering
for D, it suffices to show that if γ (a) <γ (c) < γ (b) (so that ν (b) < ν (c)), then c → b ∉ D.  But if c → b ∈ D
then also c → a ∈ D (since paD(a) = paD(b)\{a}), which contradicts γ (a) <γ (c).
2 It must be shown that if ν’ (d) < ν’ (c) then c → d ∉ D’.  Because D and D’ differ only in the edge a⋅⋅⋅b,
only the case (d, c) = (b, a) need be considered, but here clearly c → d ∉ D’.
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Finally, use the relation paD(b) = paD(a)∪{a} and the following well-known property of
conditional distributions to conclude that (B.3) and (B.4) are jointly equivalent to (B.7)
and (B.8):  for any four random variates X, Y, Z, and W,

X ⊥ (Y, Z)|W  ⇔  X ⊥ Y|W and X ⊥ Z|W, Y  ⇔  X ⊥ Z|W and X ⊥ Y|W, Z.

Therefore (B.1) and (B.2) are equivalent, hence D and D’ are Markov equivalent.
(“only if”)  The proof given by Frydenberg (1990, pp. 347-8) for chain graphs applies

without change to the special case of ADGs.  
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especially to an anonymous referee for her/his extremely careful reading of this paper.

Notes

1. Chain graphs may have both directed and undirected edges but may contain no
(partially) directed cycles; they include both ADGs and UDGs as special cases.
2. The essential graph associated with an (equivalence class of) ADG(s) was first
introduced by Verma and Pearl (1990)  as the completed pattern associated with the ADG.
3. Chickering (1995) and Meek (1995) also have obtained polynomial-time algorithms
for constructing D* from D.
4. Chickering (1995, Section 4) notes that, under certain additional assumptions, the
essential arrows (= compelled edges) of an ADG may indicate causal influences.
5. This statement is valid because we have defined Markov equivalence of chain graphs
in terms of the global Markov property - see Definition B.3 in Appendix B.  If we were to
replace the global Markov property by the local Markov property, then this statement is
not valid in general:  the local and global Markov properties of the chain graph D* need
not be equivalent, whereas those of  the ADG D must be equivalent - see Appendix B
and also the example in Remark 3.4 of Andersson et al (1996a).
6. This is not an arbitrary choice:  removal of only one arrow may leave the other
unprotected.
7. The vertices of the graphs in Table 6.1 are labelled only to allow us to describe the
Markov properties.
8. In fact, we only present a parsimonious list of independencies that are equivalent to
the global Markov properties of the essential graph.  Recall from Note 5 that the local
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and global Markov properties of the essential graph itself may not be equivalent,
whereas the local and global Markov properties of any ADG in its equivalence class are
equivalent to each other and to the global Markov properties of the essential graph. We
use the local Markov properties of such ADGs, together with standard properties of
conditional independence, to obtain our parsimonious lists.
9. In this case, the joint and conditional pdfs in (7.1) and (7.2) denote the pdfs for the
classification of  a single individual.
10. Since f(clD*(τ)) is global [(D*)clD*(τ)]m-Markovian, it admits a Gibbs factorization over

the cliques χ1, ⋅⋅⋅, χk of [(D*)clD*(τ)]m  (cf. Frydenberg (1990, p. 344)).  Because each

intersection χi∩τ is complete in (D*)τ, it is contained in at least one clique of (D*)τ.  Thus,
each conditional pdf f(τ|bdD*(τ)) admits a Gibbs factorization over the cliques of (D*)τ,

hence each conditional pdf is global (D*)τ  -Markovian.

11. Dawid and Lauritzen (1993) introduced hyper-Dirichlet distributions as natural
conjugate priors in decomposable models for categorical data.  As in the case of
Dirichlet priors for multinomial data, hyper-Dirichlet priors allow explicit expressions
for posterior model probabilities.
12. George and McCulloch (1994) discuss similar stochastic search procedures for
Bayesian model selection in regression analysis.
13. For example, Spiegelhalter et al (1993, Section 3) and Heckerman et al (1992) model
dependencies in biomedical data by means of ADGs with n = 20 and n = 108 vertices,
respectively.
14. Our notation differs from Frydenberg's in this regard:  he uses the notation a⇒b

rather than a→b in his text, although not in his figures.
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 CORRECTION

A CHARACTERIZATION OF MARKOV EQUIVALENCE CLASSES

FOR ACYCLIC DIGRAPHS

By  Steen A. Andersson, David Madigan, and Michael D.  Perlman

Annals of Statistics (1997) 25 505-541

p. 513:  In Lemma 3.2, D and D' are assumed to be graphically equivalent (p. 508).
p. 524-5. The proof of Proposition 4.5 contains two gaps.  The complete proof

appears in Remark 1 of the technical report “Graphical model search via essential
graphs,” available at the following URL:

http://www.stat.washington.edu/www/research/reports/2000/tr367.pdf
p. 538:  In the sixth line of the proof of Theorem 2.1, replace "any well-numbering ν"

by "some well-numbering ν".  The well-numbering ν can be constructed as follows.
Begin with an arbitrary well-numbering γ : V → {1, ⋅⋅⋅, n}; necessarily γ(a) < γ(b). Define
ν(a) = γ (a), ν(b) = γ (a) +1,  ν(c) = γ (c) +1 if γ (a) <γ (c) <γ (b), and ν(c) = γ (c) otherwise.
Since paD(a) = paD(b)\{a}, it can be verified that ν is also a well-numbering for D .  A
brief additional argument then shows that ν’  is also a well-numbering for D’. [see

footnotes]

p. 538:  In (B.7) and (B.8), ν(b) and ν(a) should be interchanged.  [corrections made]
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